
HotDocs White Paper

HotDocs White Paper 1

Building Interactive, Data-Gathering Forms for
BPM-Defined Workflows

BPM suites provide functionality for building data-gathering forms within
workflows. But some workflows, especially those that involve the generation of
complex legal documents, require data-gathering forms that are more complex
than what virtually any BPM suite can handle.

This disconnect between form-building functionality in BPM suites and
the needs of workflow users (to generate sophisticated, transaction-ready
documents within the workflow) results from the data-first approach taken by
BPM vendors. The data-first approach (which, for the purpose of this paper,
is defined as information gathered for some reason other than document
generation and then repurposed for document generation) is effective for any
number of workflow scenarios.

Where the data-first approach falls short, though, is in workflows having
sub-processes for generating sophisticated legal documents—contracts, for
example—which can possibly require hundreds of discrete data items in
addition to what an enterprise might have stored in its existing data records.
Beyond the sheer volume of document-specific information that may need to
be gathered is the inherent, rule-based structure of the documents themselves,
which structure dictates when and if discreet data items need to be gathered at
all.

To accurately gather all the information necessary for a document, to
prescribe the conditions under which the information gets gathered, and to
ultimately use the information to generate a transaction-ready document (or
set of documents), workflow architects need to take a different approach—a
document-first approach. The document-first approach, as the name implies,
requires that a workflow architect build business rules into the document(s)
before beginning the process of building data-gathering forms.

The document-first approach requires that an additional class of technology
be employed—document-generation process software, which not only
allows for the modeling of the document(s) (building business logic into the
document(s)) but enables interactive form design based on the structure and
data requirements of the documents in question. Enterprise-grade document
generation platforms provide APIs for BPM and other web application
integrations.

Table of Contents
The Document-First Approach

The Rule-Based Structure of Legal
Documents
The Reflexive Structure of
Information-Gathering Forms

Boilerplate Text = Boilerplate
Questions
Conditional Text = Conditional
Questions
Repeating Text

Advanced Forms for Document
Generation Workflows

Range validation
Resources
Outline View
Required Answers
Answer Selection
Interactive Forms
Conditional Forms

Integrating Document Automation
Interviews in a Workflow
Summary

HotDocs White Paper

HotDocs White Paper 2

The Document-First Approach
The process of building data-gathering forms for the purpose of generating
documents begins with the documents themselves. An architect must first build
business logic into a document, a process commonly referred to as document
modeling. Only after the document is fully modeled (automated) will the architect
know what data needs to be gathered and under what conditions.

The Rule-Based Structure of Legal Documents
Most types of legal documents have an inherent structure: a combination of
boilerplate text, conditional text, repeating text, and simple/computed variables.
Take, for example, the sales contract represented in Figure 1.

 Sales Contract

On this 23rd day of June, 2012, I, John Jones, agree to sell my car to Sally Smith
for $6,000. Sally Smith agrees to pay 48 monthly installments of $156.37 on the
�irst day of each month. Included with the car are the following items:

• Floor mats
• Tire chains
• Spare tire

___________________________ ___________________________
Seller: John Jones Buyer: Sally Smith

Figure 1. Simple sales contract with color-coding to
demonstrate document structure.

Boilerplate
Text

Conditional
Text

Repeating
Text

The contract, which is obviously not meant for actual use, is very simple and
represents only a fraction of the types of structure that might exist in an actual legal
instrument. Even still, the document is highly structured, as is depicted by the color
coding:

•	 Blue—boilerplate text (included in the document under all scenarios).
•	 Red—conditional text (included in the document only if the parties agree to a

structured payout)
•	 Purple—conditional text included only if additional items are involved.
•	 Green—repeating text nested inside conditional text (The repeating text is

only included if the purple text above it is included.)

Note also that italicized text in the example document represents simple variables
(non-computed variables) and that the underlined text represents computed
variables, of which there are three: (1) the amount of the monthly installment
payment (the result of adding the simple interest to the purchase price and dividing
by the number of months of the payout), (2) the word “are” (the plural form of “is”)
and (3) the word “items” (a plural form of “item”). Both of these plural words, of
course, would become singular if only one item were included with the sale.

An architect
must first build
business logic into
a document, a
process commonly
referred to
as document
automation.
Only after the
document is fully
automated will
the architect know
what data needs
to be gathered
and under what
conditions.

HotDocs White Paper

HotDocs White Paper 3

An automated version of the simple sales contract is represented in Figure 2.

<<
 Sales Contract

On this <DATE OF AGREEMENT>, I, <NAME OF SELLER>, agree to sell
my <ITEM TO BE SOLD> to <NAME OF BUYER> for $<PURCHASE PRICE>.>>

IF <STRUCTURED PAYOUT> = YES
 <<<NAME OF BUYER> agrees to pay <NUMBER OF MONTHS OF PAYOUT>
 monthly installments of $<AMOUNT OF MONTHLY PAYMENT> on the
 �irst day of each month. >>
END IF

IF <INCLUDED ITEMS> = YES
 <<Included with the <ITEM TO BE SOLD> <IS OR ARE> the following
 <ITEM OR ITEMS>:
 >>

 REPEAT <NUMBER OF ITEMS INCLUDED> TIMES
 <<• <INCLUDED ITEM>
 >>
 END REPEAT
END IF
<<
 >>
___________________________ ______________________________
Seller: <NAME OF SELLER> Buyer: <NAME OF BUYER>

Figure 2. Business logic built into the simple sales contract.

Boilerplate
Text

Conditional
Text

Repeating
Text

With the business rules applied, the document’s inherent structure is even more
obvious. Conditional text is nested inside IF statements. The repeating text (the list
of items included with the sale) is nested inside a REPEAT statement, which, itself, is
nested inside an IF statement. Boilerplate text is not nested inside an IF statement,
which means it will be included in the document under all conditions.

It is important to note that several variables are merged into boilerplate text and
conditional text. With virtually all document generation platforms, variables used in
the document become questions in the forms.

The Reflexive Structure of Information-Gathering Forms
The underlying premise behind forms designed for document generation is to ask only
the questions that are necessary to assemble the document(s). In other words, given
all the conditional scripting in complex documents, many questions (perhaps dozens,
or even hundreds) would be irrelevant to a particular matter, given an existing set
of conditions. Presenting such questions in the forms would be distracting, time
consuming, and potentially misleading to workflow users. It’s this concept—asking
only the relevant questions—that creates the inexorable link between document
structure and forms structure, which structure must reflect the scripting logic built
into the documents.

Boilerplate Text = Boilerplate Questions

Boilerplate text is always included in a document. Consequently, variables merged
into boilerplate text must be displayed as questions in a form under all circumstances.
For example, in the example sales contract, the boilerplate text includes several

It’s this concept—
asking only
the relevant
questions—that
creates the
inexorable link
between document
structure and
forms structure,
which structure
must reflect the
scripting logic
built into the
documents.

HotDocs White Paper

HotDocs White Paper 4

simple variables. Because all of these variables are merged into boilerplate text, they
could be grouped together in the same form, which would be displayed under all
circumstances each time the document was generated (See Figure 3).

Conditional Text = Conditional Questions

Variables merged into conditional text must be displayed as questions in a form only
if the appropriate conditions exist. For instance, in the example sales contract within
the structured payout clause, a simple variable is merged (<NUMBER OF MONTHS OF
PAYOUT>). A question for this variable would only be asked in a form if the answer to
a previous question were yes (See Figure 4).

Variables merged
into conditional
text must be
displayed as
questions in a
form only if the
appropriate
conditions exist.

Sales Contract Information

Number of Months

Will there be a structured payout?

Figure 4. Interactive Form

A Yes answer to this
question causes the
other questions in the
form to be displayed.

Interest Rate
%

Yes
No

The answer to this question
will be used in a computed
variable to determine the
amount of the lease payment.

Sales Contract Information

Name of Seller

Name of Buyer

Item to Be Sold

Purchase Price
$

Will additional items be included? Yes
No

Figure 3. Form with questions from boilerplate text.

Note that these questions
result from simple variables
merged into boilerplate text.

This question results from a
variable that is created
during the automation
of the document as part of
a conditional script (an IF
statement).

HotDocs White Paper

HotDocs White Paper 5

Repeating Text

Variables merged into text within a REPEAT instruction are, themselves, repeating
variables. Given the way the business logic is written into the example sales contract,
a question must be asked that will determine how many fields will be displayed in the
form for the included items (See Figure 5).

Note, again, that the repeating text in the simple sales contract is, itself, nested inside
an IF statement, meaning that the repeating text will only be included if a particular
condition exists (IF <INCLUDED ITEMS> = YES).

While the example sales contract is extremely simple, it nonetheless demonstrates the
two critical points—that documents have a rule-based structure and that document
structure must be reflected in forms structure so as to ask only the relevant questions
based on existing conditions.

Advanced Forms for Document-Generation Workflows
Because of the nature of many types of legal documents—rule-based, large data-
sets, complex—a number of information-gathering forms are often required for a
document or set of documents. Such a sequence of forms is commonly referred to as
an interview. A well designed interview should go beyond merely asking questions; it
should actually guide and assist workflow users in getting the answer to each question
entered correctly. A few of the features that enforce answer quality are as follows:

•	 Range validation
•	 Resources
•	 Outline view
•	 Required answers

A well designed
interview should
go beyond merely
asking questions;
it should actually
guide and assist
workflow users in
getting the answer
to each question
entered correctly.

Sales Contract Information

Figure 5. Form with repeating text.

The Yes answer causes the
the next two questions to
be displayed. Will additional items be included? Yes

No

Name of Seller
John Jones

Name of Buyer
Sally Smith

Item to Be Sold
Car

Purchase Price
$ 4,000

Number of included items
3

1
2
3

Included Items

The number entered in this
field causes the list fields
to be displayed.

HotDocs White Paper

HotDocs White Paper 6

•	 Answer selection
•	 Interactive Forms
•	 Conditional Forms

Range Validation
Range validation is a method by which an architect can ensure that an answer
falls within an acceptable range. For example, the acceptable term for a structured
payout could be set at between 12 and 48 months, depending on negotiated terms. A
validated question will not accept an answer that falls outside the prescribed range.
Range validation is possible for any numeric or date variable and is frequently used
to eliminate the possibility of legal exposure resulting from a typographical error or
otherwise wrong answer.

Resources
A resource is a help screen that can be attached to any specific question. A resource
could include an explanation of how to answer the question correctly, hyperlinks to
outside resources, or technical aids, such as a spreadsheet or calculator to assist the
workflow user in arriving at the correct answer.

Outline View
Within the context of an interview consisting of dozens of simple, interactive, and
conditional forms, it’s extremely helpful, if not critical, that workflow users be able to
envision an outline of all of the forms in an interview. This functionality is commonly
referred to as Outline View and should be an option in enterprise-grade document
automation platforms. Among other things, Outline View enables workflow users to
easily move backward and forward among the forms in an interview.

Required Answers
Within the context of a particular form, a template architect could designate that a
question must be answered before moving on to the next question.

Answer Selection
For variables requiring an answer that falls within a predefined list (for example,
counties within a state), a dropdown list can be created for the variable. In other
words, rather than typing in the answer, the user would simply select it from a list.

Interactive Forms
An interactive form includes both boilerplate questions (created from variables
merged into boilerplate text) and conditional questions (created from variables used
in scripting instructions or merged into conditional text) (See Figure 4). Interactivity
in the form results from the answer to a question causing other questions to be
displayed within the form.

Conditional Forms
Conditional forms are entire forms of questions that are displayed only if certain
conditions exist. Such forms would be created in situations where a document
included large blocks of conditional text, which itself included many items of data.

In a document-
centric workflow
that includes
the generation
of complex
documents, the
easiest approach
is to supplant
BPM forms with
an interview
built to reflect
the structure and
business logic of
the document.

HotDocs White Paper

Conditional forms, of course, can—and often are—interactive, meaning that answers
provided to some of the questions in the form cause other questions to appear in the
form.

Integrating Document Automation Interviews with a Workflow
 In a document workflow that includes the generation of complex documents, the
easiest approach is to supplant BPM forms with a document generation interview
built to reflect the structure and business logic of the document. Data already on
hand—stored in an existing database—can be passed into the workflow and can pre-
populate fields in forms built in the document generation system. The remainder of
the questions can be answered by the appropriate parties who have access and rights
within the workflow.

A completed interview can be routed for approval prior to the generation of
documents, and then the documents can be passed back into the workflow for routing
and approval.

Summary
It should be noted that not all document generation systems emphasize sophisticated
interview design and construction. Many systems focus, instead, on ease of use, an
approach that is especially applicable for organizations that have just a few simplistic
documents or for whom the objective is generating a good first draft.

However, for enterprises that produce complex legal documentation and require
transaction-ready instruments generated within the workflow that require no after-
the fact editing, an enterprise-grade document generation system is critical. Such a
system should allow for any level of document modeling, no matter how complex the
documents may be, and should facilitate reflexive interview design and development.
Finally, an enterprise-grade system will allow for deployment in multiple
environments and should include highly evolved APIs for the purpose of workflow
and other system integration.

. . . For enterprises
that produce
complex legal
documentation
and require
transaction-ready
instruments out
of the workflow
without after-
the-fact editing,
an enterprise-
grade document
automation system
is critical.

HotDocs Corporation
387 S. 520 W.
Suite 210
Lindon, Utah 84042

sales@hotdocs.com

(801) 615-2200

